Fluid shear stress increases the production of granulocyte-macrophage colony-stimulating factor by endothelial cells via mRNA stabilization.

نویسندگان

  • K Kosaki
  • J Ando
  • R Korenaga
  • T Kurokawa
  • A Kamiya
چکیده

To investigate whether the production of colony-stimulating factors (CSFs) by vascular endothelial cells is regulated by hemodynamic force, we exposed cultured human umbilical vein endothelial cells (HUVECs) to controlled levels of shear stress in a flow-loading apparatus and examined changes in the production of CSFs at both the protein and mRNA level. Exposure of HUVECs to a shear stress of 15 and 25 dyne/cm2 markedly increased the release of granulocyte-macrophage CSF (GM-CSF) detected by ELISA to 5.0 and 9.5 times, respectively, the amount released by the static controls at 24 hours, but it had no significant influence on the release of granulocyte CSF or macrophage CSF. The results of reverse transcriptase-polymerase chain reaction demonstrated that GM-CSF mRNA began to increase as early as 2 hours after initiation of 15 dyne/cm2 shear stress and continued to increase with time, reaching a peak of about four times the control levels at 24 hours. This increase in GM-CSF mRNA levels in response to shear stress depended on protein synthesis, because it was blocked by cycloheximide. Neither nuclear run-on assay or luciferase assay using a reporter gene containing GM-CSF gene promoter showed any significant change in transcription of the GM-CSF gene even after 24-hour exposure to a shear stress of 15 dyne/cm2. Actinomycin D chase experiments using a competitive polymerase chain reaction showed that shear stress extended the half-life of GM-CSF mRNA from approximately 23 to 42 minutes in HUVECs. These findings suggest that fluid shear stress increases the production of GM-CSF in HUVECs via mRNA stabilization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Expression of Human Granulocyte Macrophage Colony Stimulating Factor by Heat-Induction in Escherichia coli

A self-regulated high-copy number plasmid containing chloramphenicol resistant gene, for the production of recombinant proteins under the regulation of bacteriophage ?pL promoter, was constructed. The designed 5024 base pair expression plasmid contained a heat sensitive repressor cI857 coding gene to regulate the function of ?pL promoter under heat shock induction. Using the constructed vector,...

متن کامل

Regulation of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor expression by oncostatin M.

Oncostatin M (OM) is structurally and functionally related to a subclass of hematopoietic cytokines including leukemia-inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), granulocyte colony-stimulating factor (G-CSF), and interleukin-6 (IL-6). Using human endothelial cells (HEC) as a model for cytokine regulation of hematopoietic growth factor expression, we tested OM as an inducer of ...

متن کامل

High-yield Production of Granulocyte-macrophage Colony-stimulating Factor in E. coli BL21 (DE3) By an Auto-induction Strategy

A novel strategy to increase protein expression yield is unintended induction of expression in complex media, called auto-induction. This method can be used to express proteins under control of the lac promoter without any need to monitor bacterial growth pattern, and addition of specific expression inducers such as Isopropyl β-D-1-thiogalactopyranoside (IPTG) at proper time. In the present stu...

متن کامل

Expression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies

Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 82 7  شماره 

صفحات  -

تاریخ انتشار 1998